
Decoding	ALERT	with	your	StormLink	IQ	Receiver	
White	Paper	

	
James	Logan	
OneRain,	Inc.	

	
	
	

Decoding	ALERT	with	your	StormLink	IQ	Receiver	
	

Background:	
ALERT	(Automated	Local	Evaluation	in	Real-Time)	is	a	radio	protocol	developed	in	
the	late	1970s	that	transmits	four	byte	packets	via	RF.		The	transmissions	are	
ALOHA,	which	means	that	a	site	can	transmit	at	any	time	without	knowing	if	the	
data	was	received.		This	protocol	has	possibility	of	loss	of	data	do	to	data	collisions	
between	transmitters	that	have	overlapping	transmissions.			
	
ALERT	uses	FSK	(Frequency	Shift	Keying),	and	in	the	U.S.	the	Marker	tone	is	2133	
Hz,	and	the	Space	tone	is	1920	Hz.		Each	transmission	is	approximately	380	
milliseconds	long	made	up	of	250	ms	for	carrier	lock	and	bit	synch,	followed	by	233	
ms	for	transmitting	4	bytes	of	data	with	a	transmission	rate	of	300	baud.			The	4	
byte	payload	(32	bits)	is	made	up	of	8	format	bits,	13	sensor	ID	bits,	and	11	data	
value	bits.	
	
stop	 0	 1	 A5	 A4	 A3	 A2	 A1	 A0	 start	
stop	 0	 1	 A11	 A10	 A9	 A8	 A7	 A6	 start	
stop	 1	 1	 D4	 D3	 D2	 D1	 D0	 A12	 start	
stop	 1	 1	 D10	 D9	 D8	 D7	 D6	 D5	 start	

Figure	1	ALERT	transmission	and	bit	decoding	format	

The	sensor	ID,	made	up	of	11	bits,	can	have	a	range	of	values	between	0	and	8191.		
The	data	value,	made	up	of	11	bits	has	a	range	of	values	between	0	and	2047.	
	
Let’s	get	started	decoding	ALERT.	
	

What	you	need:	
1. StormLink	IQ	Receiver	–	USB	Dongle	
2. Download	the	following	open	source	packages	for	installation	

a. FM	Decoder:	rtl_fm			
i. http://kmkeen.com/rtl-demod-guide/index.html	

b. Audio	processing:	sox			

i. http://sox.sourceforge.net/	
c. Mini	modem:	minimodem			

i. http://www.whence.com/minimodem/	
ii. http://macappstore.org/minimodem/	

3. Perl	command	line	environment	
	

Steps	to	get	it	running:	
1. Find	out	what	frequency	ALERT	traffic	is	being	transmitted	

a. For	UDFCD,	it	is	169.5	MHz	for	the	ALERT	gauge	frequency	
2. Install	rtl_fm	
3. Install	sox	
4. Listen	to	ALERT	traffic	-	Mac	

rtl_fm	-f	169.5M	-M	fm	-s	24000	-r	24000	-l	170	-	|	play	-r	24000	-t	s16	
-L	-c	1	–	

a. The	rtl_fm	program	converts	the	narrow	band	fm	signal	to	a	16	bit,	
24,000	samples/second	audio	stream	that	can	be	fed	into	an	audio	
player	“play”	so	that	it	can	be	heard.	

b. Some	of	the	options	for	rtl_fm	
i. –f	169.5M	=	169.5	MHz	
ii. –M	fm	=	FM	narrowband	modulation	
iii. –s	24000	=	sample	at	24K	sample	rate	
iv. –r	24000	=	resample	output	at	24K	sample	rate	
v. –l	170	=	squelch	level	set	to	170	
vi. -	=	send	the	output	to	stdout	to	be	read	by	next	program	

c. Some	of	the	options	for	play	
i. –r	24000	=	input	samples	at	24K	
ii. –t	s16	=	input	data	types	as	signed	16	bit		
iii. –L	=	little	endian,	byte	ordering	
iv. –c	1	=	1	channel,	mono	
v. -	=	read	input	from	stdin	

5. Listen	to	ALERT	traffic	–	PC	
rtl_fm	-f	169.5M	-M	fm	-s	24000	-r	24000	-l	170	-	|	aplay	-r	24k	-f	
S16_LE	

a. The	rtl_fm	program	converts	the	narrow	band	fm	signal	to	a	16	bit,	
24,000	samples/second	audio	stream	that	can	be	fed	into	an	audio	
player	“aplay”	so	that	it	can	be	heard.	

b. Some	of	the	options	for	aplay	
i. –r	24k	=	input	samples	at	24K	
ii. –f	S16_LE	=	data	coming	in	at	16	bits	per	sample,	little	endian	

6. Adjust	the	squelch	for	ALERT.		It	is	the	–l	option	in	the	rtl_fm	command.		
Reduce	the	squelch	until	it	is	quiet,	just	below	the	background	noise.	

7. Install	minimodem	
8. To	listen	to	and	decode	ALERT,	use	the	following	command	line:	

rtl_fm	-p	0	-M	fm	-f	169.5M	-s24k	-l	175	|	sox	-t	raw	-r	24k		-es	-b16	-	-t	
wav	-es	-b16	-	|	minimodem	--rx	--mark	2133	--space	1920	--binary-
output	--quiet	300	-f	-	|	../alert_bin.pl	

a. The	rtl_fm	program	converts	the	narrow	band	fm	signal	to	a	16	bit,	
24,000	samples/second	audio	stream	that	can	be	fed	into	sox	which	
formats	the	audio	as	a	wav	file	data	stream.		The	wave	file	data	stream	
is	fed	into	minimodem	which	detects	the	ALERT	RF	transmission	and	
outputs	the	raw	binary	alert	data.		The	alert_bin.pl	program	takes	the	
raw	binary	alert	is	converted	to	distinct	ALERT	ID,	Value	pairs.	

b. Some	of	the	new	options	for	rtl_fm	
i. –p	0	=	set	the	ppm	frequency	error	to	0	

c. Some	of	the	options	for	sox	to	translate	
i. –t	raw	=	raw	input	
ii. –r	24k	=	24k	input	sample	rate	
iii. –es	=	signed	data	on	input	
iv. –b16	=	16	bit	data	on	input	
v. -	=	read	from	stdin	
vi. –t	wav	=	output	wav	file	
vii. -es	=	output	signed	data	
viii. –b16	=	16	bit	data	on	output	
ix. -	=	output	to	stdout	

d. Some	options	for	minimodem	
i. –rx	=	receive	mode	
ii. –mark	2133	=	mark	frequency	at	2133	hz	
iii. –space	1920	=	space	frequency	at	1920	hz	
iv. –binary-output	=	output	binary	translated	mark	and	space	bits	
v. –quiet	=	don’t	report	CARRIER/NOCARRIER	or	signal	analysis	

metrics	
vi. 300	=	BAUD	mode	300	bps	rate	
vii. –f	-	=	read	input	from	stdin	

	 	

9. Example	output	from	command	line	above	
$	rtl_fm	-p	0	-M	fm	-f	169.5M	-s24k	-l	175	|	sox	-t	raw	-r	24k		-es	-b16	-	
-t	wav	-es	-b16	-	|	minimodem	--rx	--mark	2133	--space	1920	--binary-
output	--quiet	300	-f	-	|	../alert_bin.pl	
sox	WARN	wav:	Length	in	output	.wav	header	will	be	wrong	since	
can't	seek	to	fix	it	
Found	1	device(s):	
		0:		Realtek,	RTL2838UHIDIR,	SN:	00000001	
	
Using	device	0:	Generic	RTL2832U	OEM	
Found	Rafael	Micro	R820T	tuner	
Tuner	gain	set	to	automatic.	
Tuned	to	169752000	Hz.	
Oversampling	input	by:	42x.	
Oversampling	output	by:	1x.	
Buffer	size:	8.13ms	
Exact	sample	rate	is:	1008000.009613	Hz	
Sampling	at	1008000	S/s.	
Output	at	24000	Hz.	
1247			1023		
3997			2020	
7534			1599		
5474			1893		
1432			546		
930			1418		
4845			318		
1826			454		
203			900		
5415			1652		
7199			521		
2119			133		
1138			717		
7341			1714		
1002			430		
3281			1899		
588			1412		
	
	
For	the	examples	above,	the	first	report	ID	is	1247	and	the	value	is	
1023.		The	second	report	ID	is	3997	with	a	value	of	2020	and	so	on.	

	 	

Source	Code:	
The	following	is	the	Perl	source	code	to	decode	ALERT	

#!/usr/bin/perl	
	
#	A	Simple	ALERT	Decoder	that	reads	raw	bytes	from	a	stream	
#	James	Logan	
#		
	
use	strict;	
	
my	$fileName	=	shift	@ARGV;	
my	$ifh;	
my	$is_stdin	=	0;	
my	$oneByte	=	0;	
my	$twoByte	=	0;	
my	$threeByte	=	0;	
my	$fourByte	=	0;	
my	$id	=	0;	
my	$value	=	0;	
my	$ofh	=	*STDOUT;	
my	$unused_bytes	=	0;	
	
if(defined	$fileName){	
			open	$ifh,	"<:raw",	$fileName	or	die	"Couldn't	open	$!\n";	
}	else	{	
			$ifh	=	*STDIN;	
#			binmode($ifh)	||	die	"cannot	binmode	STDIN";	
			$is_stdin++;	
}	
	
while(<$ifh>)		
{		
		my	$binLine	=	$_;		#	read	a	line	in	at	a	time	
		print	$ofh	"$binLine	";	
	
		#	Convert	ascii	to	binary	
		#	Reverse	the	order	of	the	bits	
		$fourByte	=	0;	
		for(my	$index	=	7;	$index	>=	0;	$index++)	{	
				if(substr($binLine,	$index,	1)	==	"1")	{	
						$fourByte	|=	(0x01	<<	$index);	
				}	
		}	
	
		print	$ofh	"	$fourByte\n";		
	

		#	Check	for	the	marker	bits	that	confirm	its	an	ALERT	format	message	
		if((($oneByte	&	0xC0)	==	0x40)	&&			#	01000000	
						(($twoByte	&	0xC0)	==	0x40)	&&			#	01000000	
						(($threeByte	&	0xC0)	==	0xC0)	&&	#	11000000	
						(($fourByte	&	0xC0)	==	0xC0))			#	11000000	
		{	
				use	integer;	
				#	Extract	the	ID	using	first	thirteen	bits	0	-	8191	
				$id	=	($oneByte	&	63)	+	64	*	($twoByte	&	63)	+	4096	*	($threeByte	&	1);	
				#	Extract	the	value	using	remaining	11	bits	
				$value	=	($fourByte	&	63)	*	32	+	(($threeByte	&	62)	>>	1);	
				print	$ofh	"$id			$value	\n";	
				printf	("%8.8b	%8.8b	%8.8b	%8.8b\n",	$oneByte,	$twoByte,	$threeByte,	
$fourByte);	
				$unused_bytes	=	0;	
		}	else	{	
				print	$ofh	"	%8.8b	\n",	$oneByte;	
		}	
		$oneByte	=	$twoByte;	
		$twoByte	=	$threeByte;	
		$threeByte	=	$fourByte;	
		$unused_bytes++;	
}	
	
close	$ifh	unless	$is_stdin;	
	

	
	
	
	
	
	
	

